

A programmable financial ecosystem

[image: _images/dipperin_logo.png]

Development

	Quick start

	Key Consepts

	Dapps

	Tutorials

	Smart Contract Development

Participate

	Contributions

	Release Notes

Design Docs

	Architecture Reference

	Command Line Tool

	Yellow Paper

Frequently Asked Questions

	Application-side

Quick start

Welcome to use Dipperin. Follow this guide you can run a Dipperin node on Dipperin Testnet.

Prerequisites

Dipperin uses the Go Programming Language for many of its components.

	Go [https://golang.org/dl/] version 1.11.x is required.

	C compiler

Building the source

Mac & Linux

Get source code to your go path

$ mkdir -p ~/go/src/github.com/dipperin
$ cd ~/go/src/github.com/dipperin
$ git clone git@github.com:dipperin/dipperin-core.git

Run tests

$ cd ~/go/src/github.com/dipperin/dipperin-core
$ make test
or
$./cs.sh

Build dipperin to ~/go/bin

$ cd ~/go/src/github.com/dipperin/dipperin-core
$ make build

Build following softwares to ~/go/bin

	dipperin

	dipperincli

	bootnode

	miner

	chain_checker

$./cs.sh install

Windows

The Chocolatey package manager provides an easy way to get the required build tools installed. If you don’t have chocolatey yet, follow the instructions on https://chocolatey.org to install it first.

Then open an Administrator command prompt and install the build tools we need:

C:\Windows\system32> choco install git
C:\Windows\system32> choco install golang
C:\Windows\system32> choco install mingw

Use git shell run commands below, and copy source code to your go path

You can’t run the tests if you don’t put source code in your home folder.

($HOME means home folder, example C:\Users\qydev)

$ mkdir -p $HOME\go\src\github.com\dipperin
$ cd $HOME\go\src\github.com\dipperin
$ git clone git@github.com:dipperin/dipperin-core.git

Restart cmd and run tests

$ cd $HOME\go\src\github.com\dipperin\dipperin-core
$ go test -p 1 ./...

Build dipperin to User

$ cd $HOME\go\src\github.com\dipperin\dipperin-core\cmd\dipperin
$ go install

Build dipperincli to User

$ cd $HOME\go\src\github.com\dipperin\dipperin-core\cmd\dipperincli
$ go install

Executables

The dipperin-core project comes with several wrappers/executables found in the cmd directory.

	dipperin

Our chain CLI client. It is the entry point into the Dipperin network, capable of running as a full node.
It can be used by other processes as a gateway into the Dipperin network via JSON RPC endpoints exposed on top of HTTP,
WebSocket and/or IPC transports.

	dipperincli

Our chain CLI client with console. It has all features of dipperin, and provides a easy way to start the node.
You can give commands to node in command line console, like starting mining miner StartMine or querying current block chain CurrentBlock

	bootnode

Stripped down version of our Dipperin client implementation that only takes part in the network node discovery protocol,
but does not run any of the higher level application protocols.
It can be used as a lightweight bootstrap node to aid in finding peers in private networks.

	miner

Mine block client, It must work with a mine master started by dipperin or dipperincli.
mine master dispatch sharding works for every miner registered.
So all miner do different works when mining a block. |

Running dipperin

Setting environment variables

	Mac & Linux

$ vi ~/.bashrc

Add command export PATH=$PATH:~/go/bin at bottom of the file,
and :wq for save and quit the file.

	Windows

($HOME means home folder, example C:\Users\qydev)

$ set PATH=%PATH%;$HOME\go\bin

Going through all the possible command line flags

$ dipperin -h
or
$ dipperincli -h

Full node on the main Dipperin network

	Mac & Linux

$ boots_env=venus dipperincli

	Windows

$ set boots_env=venus
$ dipperincli

This command will:

	Guide you to setup your personal Dipperin start config, and will write these args to your $HOME/.dipperin/start_conf.json, you can change these start args in this file.

	Start sync Dipperin test-net data from other nodes.

Using command line

The following command is to start a node, which requires a wallet password.

If no wallet path is specified, the default system path is used: $Home/.dipperin/.

$ dipperincli -- node_type [type] -- soft_wallet_pwd [password]

Example:

Local startup miner:

$ dipperincli -- node_type 1 -- soft_wallet_pwd 123

Local startup miner(start mining):

$ dipperincli -- node_type 1 -- soft_wallet_pwd 123 -- is_start_mine 1

Local startup verifier:

$ dipperincli -- node_type 2 -- soft_wallet_pwd 123

Error

If dipperincli started in a wrong way,
it may be that the local link data is not synchronized with the link state,
and the local link data needs to be deleted:

	Mac & Linux

$ cd ~
$ rm .dipperin -fr

	Windows

$ rd /s /q $HOME\.dipperin

restart command line tool

See more details for Command Line Tool

Key Consepts

	Blockchain

	Consensus

	Transactions

	The Network

	Nodes

	Smart Contract

Blockchain

What is blockchain?

Blockchain is a distributed system recording and storing transaction records. More specifically, blockchain is a shared, immutable record of peer-to-peer transactions built from linked transaction blocks and stored in a digital ledger.

Blockchain technology originated from Bitcoin. Bitcoin shows an electronic money trading system that does not rely on trustable third parties. This system uses a synchronized ledger distributed across all nodes instead of a single ledger on a traditional central server, replacing the subjective “trust” of intermediaries with an objective “consensus” mechanism, enabling reliable value transfer in a non-trusted environment.

The birth of the blockchain provides a new type of social trust mechanism for human beings, marking the beginning of a truly trustworthy Internet for human beings and forms the foundation of value Internet.

How does blockchain work?

Blockchain is a shared ledgers that records transactions in a peer-to-peer network.

Transactions are collected and recorded into a data structure called block. All the confirmed and validated transaction blocks are linked and chained from the beginning of the chain to the most current block, hence the name blockchain.

A distributed network

The ledger is distributed to all member nodes in the network. Each node maintains their own copy of the ledger.

The decentralized peer-to-peer blockchain network prevents any single participant or group of participants from controlling the underlying infrastructure or undermining the entire system. Participants in the network are all equal, adhering to the same protocols. They can be individuals, state actors, organizations, or a combination of all these types of participants.

Consensus

Anyone in the blockchain network can submit transactions to be stored onto a blockchain and therefore it is important that there is review and confirmation, in the form of a consensus about whether to add those transactions.

Consensus ensures that the shared ledger are exact copies, and lowers the risk of fraudulent transactions. It makes nodes on the blockchain network agree on the same state of blockchain.

What is Dipperin?

Dipperin is a public blockchain founded by the Keychain Foundation Ltd. Dipperin builds a native multi-chain system which supports multi-industry (digital asset, supply) and multi-form (built-in paradigm on the chain, cloud server, applet, side chain, etc.) decentralized applications through tiered smart contract design, high-frequency transaction paradigm and unlicensed business innovation support, combined with multiple technologies. Dipperin has technical features:

	Original deterministic proof of work consensus mechanism

We proposed a deterministic proof of work consensus mechanism. Our protocol separates the block production and verification. It keeps the decentralization level of the bitcoin, shortening the time for reaching consensus, and providing the performance to meet the tens of millions of daily activities (DAU). For more information please refer consensus.

	Verifiable Random Function(VRF) based verifier sortition mechanism

Dipperin has applied a cryptographic sortition for verifiers based on VRF(Verifiable Random Function). This sortition mechanism ensures that only a small percentage of users are selected, and the chance of being selected is propotional to its weight. Random results cannot be predicted in advance and cannot be manipulated by any malicious adversory. Dipperin’s sortition mechanism provides objective security, that is, the whole process is objective, and decisions are made entirely through calculations. Human intervention cannot affect this process.

	Layered smart contract architecture

The layered intelligent contract design separates the business logic from the state consensus, and standardizes the cross-chain interface to achieve cross-chain communication at the telecommunications network level while standardizing the burden on the main chain. Dipperin follows the stacking principle, and each layer is designed as Plug-and-Play (plug-and-play), in which the core modules are replaceable, making Dipperin a simpler and more extensive service.

	Native multi-chain system

Dipperin’s native multi-chain architecture provides a model for the main chain and sidechain division of labor. Its ultra-light wallet payment verification (CSPV) technology provides strong support for mobile users. CSPV technology allows ultra-light nodes to synchronize data with minimal amounts and does not grow with blockchain growth, and any mobile client or even smart contract code area can support it.

Consensus

Deterministic Proof of Work

We implemented a new consensus protocol called Deterministic Proof of Work(DPoW) that guarantees the deterministic finality of transactions.

[image: ../_images/consensus_mech.png]

DPoW is a hybrid consensus protocol, it introduces a Map-reduce PoW mining mechanism to work alongside Byzantine Fault Tolerance(BFT) verification. It combines the advantages of both PoW and BFT, allows transactions to be confirmed immediately while keep highly decentralized. It assure strong consistency and security against a multitude of attacks largely because the protocol does not allow forking.

Verifiable Random Function(VRF) based verifier sortition mechanism

Of all consensus algorithms, BFT is particularly characterized by high consistency and efficiency. Nonetheless, at least 2/3 of all nodes in the system should be honest to ensure the safety and liveness of the system. Therefore, it is essential to select honest nodes as verifiers from so vast candidates.

Weighted Users

Reputation is very important in business. Our system quantifies the reputation of users and measures the weight of users by reputation. The verifier is selected by lottery, and the candidate with higher reputation has more chance of being selected. Under hypothesis that 2/3 of the network’s reputation is good, the chain’s security can be guaranteed. We believe that reputation-based weights are more fair than weighting method based on computing power or based on stocks.

Reputation : Reputation = F(Stake, Performance ，Nonce)

There are three factors for measuring reputation, stake, performance and nonce.

Verifier Sortition

The role of verifier sortition is to select candidates as block proposer or verifier whose identity can be verified by all other users.

The implementation of cryptographic sortition uses VRF: In the VRF algorithm, for a common input, the user can generate a hash value and a proof using its private key SK and a hash function. Other users can use this hash value and the proof, combined with the user’s public key PK, to verify whether the hash value is generated by the user for that input. The hash value determines who would be selected.

In the process, the user’s private key is not leaked at all from beginning to end. The user is authenticated in this way, and other users can believe his role as a verifier for a certain period of time. In this way, a set of users can be randomly selected through a common input and their identity can be verified by others.

Procedure Sortition(Stake, Performance，Nonce, Seed)
--
reputation = Reputation(Stake, Performance，Nonce)

<hash, proof> = VRF(PrivateKey,Seed)

priority = Priority(hash,reputation)

return (priority, proof)

The purpose of our introduction of reputation is to make high-credit users more likely to be selected. Whether a certain user can be selected is not a deterministic event. The randomness in the sortition algorithm comes from a publicly known random seed.

Seed

Dipperin produce a public known seed for each height. This seed cannot be controlled by attackers or be predicted in advance; otherwise, an adversary may be able to choose a seed that favors selection of corrupted users.

The seed is produced by miners when pack new blocks. Once the network reaches agreement on the block for height r-1, miners can computer the next seed as Seed_r, proof := VRF(SK_r-1 proposer , Seed_r-1). Each random output of the VRF is unpredictable by any miner until it becomes available to everyone. The winner block of height r would determines the seedr.

Dipperin verifier committee members are replaced each 220 blocks. We call each 220 blocks a “slot”. The seed in the last block of Slot d (e.g. #299 block of Slot 3), determints the verifier committee members of Slot d + 2 (e.g. Slot 5).

Transactions

Transactions are proposals to update the ledger and are collected into blocks.

Transaction data structure

Transaction is created by user and broadcasted into the blockchain network. When the transaction was included in a block and accepted by full nodes, the transactions is confirmed. The data structure of transaction is as below:

type transaction struct {
 AccountNonce uint64 // The nonce value of the account who has launched this transaction
 Recipient []byte // the counterparty of this transaction which has a length of 22 bytes where the first 2 bytes are used to mark the type of the transaction and the last 20 are the address of the counterparty
 Amount []byte // transaction amount
 Fee []byte // the trasaction fee for the miner
 ExtraData []byte // additional remarks for the transaction, if it is a contract transaction,then it's accompanied by the data of the contract operation
 Witness []byte // the signature of the originator
}

The “AccountNonce” field can avoid a transaction be broadcasted duplicated. And transaction fee would be charged for the usage of computing power and disk space.

Committing transactions

The process of committing a transaction is:

	User signs off on a transaction from their wallet application to send a certain crypto or token from them to someone else.

	The transaction is broadcasted by the wallet application.

	Some miner packed this transaction and submitted to the verifier group.

	Verifiers consensus on the block, broadcast the result to the rest of the network.

	Full nodes received the verified block from verifiers, update their ledger.

A transaction is a proposal to update the ledger.

[image: ../_images/translate.png]

The state of ledger can be transfer from one state to another state by processing a transaction.

State

State of the ledger is the whole states of all accounts.

type account struct {
 Nonce uint64 // the total number of transactions originated by this account
 Balance []byte // the balance of this account address
 Stake []byte // the amount of the deposit in this account
 CommitNum uint64 // the total number of messages committed by this account
 Performance uint64 // the performance as verifier of the account, which is an important factor of the reputation
 VerifyNum uint64 // the number of blocks that this account should verify in total
 LastElect uint64 // the height of last elect transaction. The stake cannot be retrieved within 4 periods after the height
 ContractRoot []byte // the root hash of the contract trie created by this account
 DataRoot []byte // the root hash of the tree structure of the data generated by the application of the account executed off the chain
}

There are two kinds of account:

	Normal account

	Contract account

The fields “Stake”, “CommitNumber”, “Performance”, “VerifyNum” and “LastElect” are used by normal accounts to record their verifier status.

The fields “ContractRoot” and “DataRoot” are used by contract accounts.

For example, there is a committed transaction that alice transfer 5 coins to Bob, with 0.05 transaction fee. To process this transaction, balance of Alice would minus 5.05, balance of bob add 5. The rest 0.05 would be distributed to miner and verifiers.

Transaction validity

Transactions would be validated before add into the blockchain. There are two main rules:

	Transaction is digitally signed by the required parties

	Output state of the transaction is valid

A block is valid when block header is valid, all transactions and verifiers’ votes included in the block are valid.

The Network

Dipperin uses DHT(Distributed Hash Table) at P2P network structure, to improve searching effectiveness between nodes and the P2P network capability that defend DOS(Denial of Service) attack. In this case even if a whole batch of nodes in the network were attacked, the availability of the network would not be significantly affected. Dipperin uses Kademlia algorithm to realize DHT.

Network structure

A Dipperin network is a peer-to-peer decentralized network of nodes. Each node runs the Dipperin software.

[image: ../_images/network_structure.png]

All communication between nodes is point-to-point and encrypted using transport-layer security.

Admission to the network

Dipperin networks are public. To join a network, Node need connect the Dipperin Boot Nodes.

Before the chain release, Dipperin deploys some start nodes (BootNode), hard-coded in the program. In this way, when these nodes are started for the first time, they will connect automatically the bootnodes, exchange the K-bucket between the nodes, and obtain more nodes ID to make connections, thus joining the entire Dipperin network.

[image: ../_images/bootnode.png]

The first time a node connects to the network it uses one of the predefined boot nodes. Through these boot nodes a node can join the network and find other nodes.

Nodes

Node architecture

Dipperin written in Golang. We can visualize the node’s internal architecture as follows:

[image: ../_images/node_arch.png]

Dipperin node’s internal is a three-tier architecture, isolates parts that have clearly different functions.

interface/event

This layer is the interface that triggers the node response， Users can interact with other nodes through http, websocket and p2p.

service

This layer is to process the business logic, encapsulate the logical methods of each business module, provide an interface upwards for the upper layer to call.

base model

This layer is mainly to achieve the underlying functions required by the node, like transaction-pool, contract base module.

Smart Contract

What is a smart contract?

The blockchain concept has been extended over last 9 years, for use not only with crypto currency but other types of records, as well as smart contracts and other decentralized applications. Code is run on the blockchain through the use of smart contracts.

Smart contracts are computer protocols that facilitate, verify, or force the negotiation or performance of contract. Terms of smart contract are recorded in a form of computer code instead of legal language. It can be half-automatically executed by a computer system. In other words, smart contract is computer program that directly controls some digital assets. Smart contracts allows to sign and witness transactions between any two or more parties without the necessity of third party.

Dipperin smart contract

Dipperin supports smart contract. It follows a structured design philosophy, stripping business logic and state consensus. Is provides a broader and easier-to-use smart contract development support while reducing the load on the main chain.

Dipperin’s smart contract architecture consists of the following three layers:

[image: ../_images/znhy.jpg]

	Core state storage layer:

Based on MPT technology, it provides an efficient distributed application state storage, while implementing a chain-limited finite state machine. By applying state constraints on the chain of smart contracts and applying boundary definitions to their contracts, the security and performance energy levels of the application and the underlying blockchain are leapfrogged.

	Enabling layer:

Consensus communication layer uses P2P communication technology and plugable and replaceable consensus algorithm, and integrates high frequency contract paradigm primitives such as ERC20/ERC721, etc. This layer also provides side chain bidirectional anchoring and cross The basic capabilities of chain communication.

	Application layer:

change the state of the application through the interface provided by the state consensus engine. The implementation forms include the chain-based high-frequency, paradigm-based dApp based on configuration parameters, and the cloud server interacting with the consensus engine in the wallet sandbox environment. Run the applet (H5+JS), a custom sidechain generated by one-click provided by Dipperin.

Dapps

	Dipperin Dapp Development

Dipperin Dapp Development

How to develop a Dapp with Dipperin Wallet Extension

Dipperin Wallet Extension supply a set of interfaces for Dapp developer, which makes developing a Dapp more easily.

How Dipperin Wallet Extension works?

If you have already installed Dipperin Wallet Extension in your Chrome，it will inject all Dipperin supplied interfaces into all web pages in your browser. By this way, Dapp can interact with Dipperin network. Developers can get these interface by following ways.

window.dipperinEx

Interfaces

DipperinEx supplied 5 interfaces，they have functions as follow：

window.dipperinEx.isApproved; // Get the authorization state of Dapp
window.dipperinEx.approve; // Authorize the Dapp
window.dipperinEx.send; // Send transactions
window.dipperinEx.getActiveAccount; // Get accounts of users.
window.dipperinEx.on; // Listen for the message from the wallet extension.

dipperinEx.isApproved

dipperinEx.isApproved supply the Dapp authorization state.

const dapp_name = "Your Dapp's name";
/**
 * @param {string} dappName
 * @returns {Promise<{isApproved: boolean}>}
 */
window.dipperinEx
 .isApproved(dappName)
 .then(res => console.log(res)) // { isApproved: true }
 .catch(e => console.log(e));

If the value isApproved is true, it represent that Dapp is authorized。

dipperinEx.approve

dipperinEx.approve is used for Dipperin Wallet Extension to authorize Dapp. Function can be called as follow.

/**
 * @interface ApproveRes
 */
interface ApproveRes {
 popupExist: boolean;
 isHaveWallet: boolean;
 isUnlock: boolean;
}
/**
 * @param {string} dappName
 * @returns {Promise<ApproveRes>}
 * @throws {ApproveRes}
 */
window.dipperinEx
 .approve(dappName)
 .then(res => console.log(res)) // {popupExist: false, isHaveWallet: true, isUnlock: true}
 .catch(e => console.log(e)); // {popupExist: false, isHaveWallet: true, isUnlock: false}

After call the function, there will shown dialog to request for user’s authorization.

The return value of isHaveWallet represents whether user have accounts in this extension. IsUnlocked means the wallet is unlocked. The result of user authorization can get by call dipperinEx.isApproved.

dipperinEx.send

Dipperin Wallet Extension supply dipperinEx.send for user to send transactions.

type Send = (
 name: string,
 to: string,
 value: string,
 extraData: string
) => Promise<SendResFailed | string>;

There are 4 input parameters, name for the name of the Dapp, to for the receiving address. value for the money to send, and extraData for extra data.

const address = "0x00003A9A328170b650E89F2C28F2E61364d2aEdC292e";
const amount = "1";
const extraData = "The message your dapp need";
/**
 * @interface SendResFailed
 */
interface SendResFailed {
 isApproved: boolean;
 isHaveWallet: boolean;
 isUnlock: boolean;
 info: string;
}

/**
 * @param {string} address
 * @param {string} amount
 * @param {string} extraData
 * @returns {Promise<string>}
 * @throws {ApproveRes}
 */
windox.dipperinEx
 .send(APP_NAME, DEAULT_ADDRESS, amount, extraData)
 .then(res => console.log(res)) // 0x8d303cb0b24fd332614a02c477605255e6a29afc3d477086603583f8aea5ddff
 .catch(e => console.log(e)); // {popupExist: false, isApproved: true, isHaveWallet: true, isUnlock: true, info: "send tx failed"}

If success it will return a transaction hash, otherwise return an error message.

dipperinEx.getActiveAccount

dipperinEx.getActiveAccount can get authorized account address.

/**
 * @param {string} dappName
 * @returns {Promise<string>}
 */
window.dipperinEx.getActiveAddress(dappName); // 0x00008522edBC22d9db52fa3AF05C2093dfFbFFF9DdBD

If success it will return an address, otherwise return an empty string.

dipperinEx.on

“dipperinEx.on” is used by Dapp to get Dipperin wallet extension messages.

window.dipperinEx.on("changeActiveAccount", () => {
 console.log("Have changed active account!");
});

Tutorials

	Build your first network

	Distribute your token

Build your first network

Install and start Dipperin Command Line Tool

If you don’t know how to install or start Dipperin Command Line Tool, please take a look at the Quick Start

Init verifiers

After start verifier nodes, you’ll see

t=2019-01-27T10:44:46+0800 lvl=info msg="setup default sign address" addr=0x0000C82ADd56D1E464719D606bB873Ad52779c67F465

copy this address like 0x0000C82ADd56D1E464719D606bB873Ad52779c67F465 to your genesis verifiers.

$ dipperin --node_type 2 --soft_wallet_pwd 123 --data_dir /home/qydev/dipperin/verifier1 --http_port 10001 --ws_port 10002 --p2p_listener 20001
$ dipperin --node_type 2 --soft_wallet_pwd 123 --data_dir /home/qydev/dipperin/verifier2 --http_port 10003 --ws_port 10004 --p2p_listener 20002
$ dipperin --node_type 2 --soft_wallet_pwd 123 --data_dir /home/qydev/dipperin/verifier3 --http_port 10005 --ws_port 10006 --p2p_listener 20003
...

This is done so that you can generate the default verifier wallet, which you can configure in genesis.json.

Setup genesis state

You need input content below into file $HOME/softwares/dipperin_deploy/genesis.json.

{
 "nonce": 11,
 "accounts": {
 "0x00005EE98a9d6776F4599f8cD9070843E6D03Ce6af19": 1000,
 "0x00005EE98a9d6776F4599f8cD9070843E6D03Ce6af29": 1000,
 "0x00005EE98a9d6776F4599f8cD9070843E6D03Ce6af39": 1000
 },
 "timestamp": "1548554091989871000",
 "difficulty": "0x1e566611",
 "verifiers": [
 "0x00005EE98a9d6776F4599f8cD9070843E6D03Ce6af19",
 "0x00005EE98a9d6776F4599f8cD9070843E6D03Ce6af29",
 "0x00005EE98a9d6776F4599f8cD9070843E6D03Ce6af39",
 "0x00005EE98a9d6776F4599f8cD9070843E6D03Ce6af49"
]
}

In the json, accounts is pre-fund some accounts for your private chain. verifiers is first round default verifiers for you private chain, this list must have 22 verifiers, you can change this number in core/chain-config/config.go at func defaultChainConfig -> VerifierNumber.

Start a bootnode

Generate bootnode private key file, and start it.

$ bootnode --genkey=boot.key
$ bootnode --nodekey=boot.key

You’ll see the following code:

bootnode conn: enode://958784048f7021c99b5ce82bd0078398037226ffd35c166b874fc8ff36d0c4e07e0a2a28eb02b6d993ec8b652f79a9bf79725fcf7ba754bf4c2f670f330b9080@127.0.0.1:30301

when bootnode started, copy this conn str to core/chain-config/config.go at func initLocalBoots -> KBucketNodes,
and recompile your dipperin, your node will auto connect this bootnode when started.
Or you can write this conn str to your node’s static_boot_nodes.json file in datadir, it’s content should like:

[
 "enode://958784048f7021c99b5ce82bd0078398037226ffd35c166b874fc8ff36d0c4e07e0a2a28eb02b6d993ec8b652f79a9bf79725fcf7ba754bf4c2f670f330b9080@127.0.0.1:30301"
]

Start verifiers

You should remove full_chain_data in all datadir because of your genesis block has changed, and don’t remove CSWallet in datadir.
Then run commands below to started verifiers.

$ dipperin --node_type 2 --soft_wallet_pwd 123 --data_dir /home/qydev/dipperin/verifier1 --http_port 10001 --ws_port 10002 --p2p_listener 20001
$ dipperin --node_type 2 --soft_wallet_pwd 123 --data_dir /home/qydev/dipperin/verifier2 --http_port 10003 --ws_port 10004 --p2p_listener 20002
$ dipperin --node_type 2 --soft_wallet_pwd 123 --data_dir /home/qydev/dipperin/verifier3 --http_port 10005 --ws_port 10006 --p2p_listener 20003
...

Start miner master(default have a miner)

$ dipperin --node_type 1 --soft_wallet_pwd 123 --data_dir /home/qydev/dipperin/mine_master1 --http_port 10010 --ws_port 10011 --p2p_listener 20010
...

This command will start a mine master and start a miner in it, you’ll see it is mining block and broadcast block to verifiers.

And your private chain block height is growing up.

Distribute your token

Dipperin supports formalized ERC20 token smart contract. ERC20 token can be deployed through three tools:

	Command line

	Wallet application

	Dipperin JavaScript API(dipperin.js)

Deploy token through command line

Start command line
$ dipperincli
Deploy ERC20 token
rpc -m AnnounceERC20 -p [owner_address], [token_name], [token_symbol], [token_total_supply], [decimal],[transactionFee]
Example
rpc -m AnnounceERC20 -p 0x0000D07252C7A396Cc444DC0196A8b43c1A4B6c53532,chain,stack,5,3,0.00001

See more details for Command Line Tool

Deploy token through wallet application

Download and install wallet.

After you created your account, jump to the contract page.

[image: ../_images/contract1.jpg]

Click create contract and turn to a create contract page.

[image: ../_images/contract2.jpg]

Fill in the informations and click create. Done.

[image: ../_images/contract3.jpg]

Deploy token through JavaScript API

Import dipperin.js in your JavaScript file.

dipperin
import dipperin， { Contract， Accounts } from '@dipperin/dipperin.js'
dipperin
const dipperin = new Dipperin("$YOUR_RPC_PROVIDER")
// Deploy token contract
const contract = Contract.createContract(
 {
 owner: $YOUR_CONTRACT_OWNER,
 tokenDecimals: $YOUR_TOKEN_DECIMALS,
 tokenName: $YOUR_TOKEN_NAME,
 tokenSymbol: $YOUR_TOKEN_SYMBOL,
 tokenTotalSupply: $YOUR_TOKEN_TOTAL_SUPPLY
 },
 $YOUR_TOKEN_TYPE,
 $YOUR_TOKEN_ADDRESS
)
// Create a transaction
const signedTransaction = Accounts.signTransaction(
 {
 extraData: contract.contractData,
 fee: $TRANSACTION_FEE,
 nonce: $YOUR_ACCOUNT_NONCE,
 to: $YOUR_TOKEN_ADDRESS,
 value: '0',
 },
 $YOUR_PRIVATE_KEY
)
// Send transaction
dipperin.dr.sendSignedTransaction(signedTransaction.raw)
 .then(transactionHash => {
 // Do something
 })
// Done.

Smart Contract Development

	Install Compiler

	Deploy Smart Contract

	Understanding ABI Files

	Data Types

	Functions

	Events

	Gas Calculation

Install Compiler

Dipc is a compiler that compile Dipperin C++ smart contract code to WebAssembly program.

Build From Source Code

Required

	GCC 5.4+ or Clang 4.0+

	CMake 3.5+

	Git

	Python

Ubuntu

Required: 16.04+

	Install Dependencies

sudo apt install build-essential cmake libz-dev libtinfo-dev

	Get Source Code

git clone https://github.com/dipperin/dipc.git
cd dipc
git submodule update --init --recursive

	Build Code

cd dipc
mkdir build && cd build
cmake ..
make && make install

Windows

Required: MinGW-W64 GCC-8.1.0 [https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/8.1.0/threads-posix/sjlj/x86_64-8.1.0-release-posix-sjlj-rt_v6-rev0.7z]

NOTES: MinGW and CMake must be installed in a directory without space.

	Get Source Code

git clone https://github.com/dipperin/dipc.git
cd dipc
git submodule update --init --recursive

	Build Code

cd dipc
mkdir build && cd build
cmake -G "MinGW Makefiles" .. -DCMAKE_INSTALL_PREFIX="C:/dipc.cdt" -DCMAKE_MAKE_PROGRAM=mingw32-make
mingw32-make && mingw32-make install

Use Dipc

Skeleton Smart Contract Without CMake Support

	Init a project

dipc-init -project example -bare

	Build contract

cd example
dipc-cpp -o example.wasm example.cpp -abigen

Skeleton Smart Contract With CMake Support

	Init CMake project

dipc-init -project cmake_example

	Build contract

	Linux

cd cmake_example/build
cmake ..

	Windows

Required:

	MinGW-W64 GCC-8.1.0 [https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/8.1.0/threads-posix/sjlj/x86_64-8.1.0-release-posix-sjlj-rt_v6-rev0.7z]

	CMake 3.5 or higher

cd cmake_example/build
cmake .. -G "MinGW Makefiles" -DCMAKE_PREFIX_PATH=<cdt_install_dir>

Deploy Smart Contract

Step 1: Obtain Contract Source

Generate a seleton smart contract using dipc-init, and fill the business logic you need in the contract.

dipc-init -project example -bare

If you do not use the dipc-init tool, you need to introduce the “dipc/dipc.h” header file in the contract file and inherit the Contract class and provide an external function init.

#include "dipc/dipc.h"

class YourContractName : public Contract {
 EXPORT void init();
}

Step 2: Deploy a Contract

Dipperin currently offers two ways to deploy and call smart contracts through both command line and wallet. A contract is deployed through sending contract transactions.
|

Deploy a Contract from Console

By calling the command

tx SendTransactionContract -p ${deployAddress},${value},${gasPrice},${gasLimit} --abi ${abiPath} --wasm ${wasmPath} --input ${init params} --is-create

to deploy the contract。

The meaning of each parameter is:

	deployAddress：the address of the contract issuer;

	callAddress: the address of the contract caller;

	value：the number of DIPs transferred to the contract;

	gasPrice：the gas price specified by this transaction;

	gasLimit: the maximum amount of gas consumed in this transaction is charged according to the actual use. If the specified value is insufficient, the transaction will fail;

	abiPath：he path to the ABI file generated by compiling the contract file;

	wasmPath：the path to the wasm file generated by compiling the contract file;

	init params：if the contract’s init function parameter is not empty, then the parameter needs to be passed here when creating the contract;

	funcName：the name of the function to be called;

	func params:parameters that need to be passed when calling the contract function。

Call a Contract from Console

Call CONSTANT Function

By calling the command

tx CallContract -p ${callAddress},${contractAddress} --func-name ${funcName} --input ${func params}

to call the contract function。The meaning of each parameter is the same as above。

Call Non-CONSTANT Function

By calling the command

tx SendTransactionContract -p ${callAddress},${contractAddress},${value},${gasPrice},${gasLimit} --func-name ${funcName} --input ${func params}

to call the contract function。The meaning of each parameter is the same as above。

See Command Line Tool for details.

Deploy and Call a Contract from Wallet

Using Dipperin Wallet to deploy and call smart contracts is very simple, as long as you download and install the wallet, it is easy to operate according to the interface instructions.

Understanding ABI Files

When publishing a smart contract on the dipperin chain, you need to provide the ABI file generated when compiling the smart contract using the dipc tool. ABI (Application Binary Interface) is a JSON-based description that shows how to translate user operations between JSON and binary representations. ABI also describes how to convert database state to JSON or convert from JSON. Once you describe your smart contract through ABI, developers and users can seamlessly interact with your smart contract via JSON.

Special Note: ABI can be bypassed when executing a contract transaction. The messages and actions passed to the smart contract do not have to comply with the ABI. ABI is a guide, not a guard.

All methods that can be called directly by the user in the contract will be described by generating a corresponding JSON object in the ABI file.

[{
 "name": "init",
 "inputs": [
 {
 "name": "tokenName",
 "type": "string"
 },
 {
 "name": "symbol",
 "type": "string"
 },
 {
 "name": "supply",
 "type": "uint64"
 }
],
 "outputs": [],
 "constant": "false",
 "payable": "false",
 "type": "function"
},
{
 "name": "GetBalance",
 "inputs": [
 {
 "type": "string"
 },
 {
 "type": "string"
 },
 {
 "type": "uint64"
 }
],
 "type": "event"
}
]

This is part of an ABI file for an example token contract. The meanings of their fields are:

name: indicates the name of the method in the contract or the name of the event in the contract;
inputs: method parameters；
inputs.type: indicates the type of the input parameter;
inputs.name: indicates the field name of the input parameter;
outputs: the return value of the method;
outputs.type: indicates the type of the return value;
constant: a value of true means that the method does not change the state of the contract data, and can be called directly without sending a transaction;
payable: a value of true indicates that DIP can be transferred to the contract account by this method.
type: indicates the type of the abi object, which has two types: event and function.

The types supported by inputs.type and outputs.type are as follows (the types of input and return values supported in accessible functions) :

	std::string

	unsigned char

	char[]

	char *

	char

	const char*

	bool

	unsigned long long

	unsigned long

	unsigned __int128

	uint128_t

	uint64_t

	uint32_t

	unsigned short

	uint16_t

	uint8_t

	__int128

	int128_t

	long long

	int64_t

	long

	int32_t

	short

	int16_t

	int8_t

	int

Data Types

Storage Types

Dipc provides template types to provide data persistence to the dipperin chain.

	Uint8

	Int8

	Uint16

	Int16

	Uint

	Int

	Uint64

	Int64

	String

	Vector

	Set

	Map

	Array

	Tuple

	Deque

template types to provide data persistence to the dipperin chain.

Storage types usage example:

// Example one Map uses:
// Define the storage field name
char bal[] = "balance";
// Storage field name key type value type
Map< bal, std::string, uint64_t > balance;

// Example two String uses:
// Define the storage field name
char name[] = "contract_name";
// Storage field name
String<name> contract_name;

In the contract, the field defined by the storage type is used and its value is automatically stored on the dipperin chain when the contract is created.

Fundamental Types

Dipc supports all basic types of C++, standard library types and their arithmetic operations
And the types defined in the dipclib package：

	Big integer types defined using the boost library

	bigint

	u64

	u128

	u256

	u160

	u512

	Integer and unsigned integers encoded using VLQ

	unsigned_int

	signed_int

	Custom types for efficient use of memory

	map

	array

	list

	Types defined by the custom FixedHash class

	h256 //32bytes

	h160

	h128

	h64

	Address

Functions

Smart contracts access and modify state variables through functions. Function can be modified with PAYABLE, CONSTANT, EXPORT. PAYABLE, CONSTANT, EXPORT need to be written before the return value of function. The modified function is externally accessible, and the unmodified function is an internal function that is not accessed externally.

Init Function

The init function is required and must be a function that can be accessed externally. A smart contract only allows one init function. The init function allows arguments to be passed and will only executed once during the contract deployment and run.

#include "dipc/dipc.h"

class YourContractName : public Contract {
 EXPORT void init();
}

Accessible Functions

The parameter types and return value types of functions that can be accessed externally are restricted. Currently only simple types are supported:

	std::string

	unsigned char

	char[]

	char *

	char

	const char*

	bool

	unsigned long long

	unsigned long

	unsigned __int128

	uint128_t

	uint64_t

	uint32_t

	unsigned short

	uint16_t

	uint8_t

	__int128

	int128_t

	long long

	int64_t

	long

	int32_t

	short

	int16_t

	int8_t

	int

Input parameters and return values do not support storage types and other custom types. Accessible Functions of the same name are not supported, ie overloads of accessible functions are not supported.
There are three types of accessible functions: CONSTANT, PAYABLE, and EXPORT. The usage and functions of the CONSTANT, PAYABLE, and EXPORT macro definitions in dipc are:

Macro	Utilized Location	Functions	示例
—	—	—	—
EXPORT	Before the return value of the method declaration and definition	Indicates that the method is an external method	EXPORT void init();
CONSTANT	The same as above	Indicates that the method does not change the state of the contract data, and can be called directly without sending a transaction.	CONSTANT uint64 getBalance(string addr);
PAYABLE	The same as above	Indicates that DIP can be transferred to the contract account by this method.	PAYABLE void transfer(string toAddr, uint_64 value);
These three macros are independent of each other and cannot be used at the same time.

Internal Functions

The internal function follows the definition of the C++ language function and does not impose any restrictions.

Return Value Display

If there is a query request for the return value of the externally accessible function, you need to manually call the DIPC_EMIT_EVENT in the EVENT section in the contract to save it into the Log in the receipts, and then query it by getting the receipts or Log.

Standard Library Functions

Function Name	Function Introduction	Parameters	Return Types
————–	————————————————————	——————————	————
gasPrice	Get the gas price of the current transaction		int64_t
blockHash	Get the hash of the block based on the block height	int64_t number	h256
number	Get the blocknumber of the current block		uint64_t
gasLimit	Get the gas limit of the current transaction		uint64_t
timestamp	Get the packing timestamp of the block		address
coinbase	Get the packaged miner address of the current block		string
balance	Get the account balance of an account on the chain	Address adr	uint64
origin	Get the account address of the contract creator		Address
caller	Get the account address of the contract caller		Address
sha3	Sha3 encryption operation		h256
getCallerNonce	Get the transaction nonce of the contract caller account		string
callTransfer	Transfer the DIP of the contract account to the specified account	Address to ,u256 value	int64_t
prints	Print a string variable	string	void
prints_l	Print the first few characters of a string variable	bool condition, string msg	void
printi	Print a 64-bit signed Integer	string msg	void
printui	Print a 64-bit unsigned Integer	bool condition, string msg	void
printi128	Print a 128-bit signed Integer	(address addr, uint256 amount)	void
printui128	Print a 128-bit unsigned Integer	const uint128_t* value	bool
printhex	Print data in hexadecimal format	int64 value	string
print	Template function to print any basic type data	any basic type	void
println	Template function, print any basic type data, and add a newline at the end	any basic type	void
DipcAssert	Determine if the given condition is true, if it is not true, it will throw an exception	uint64 value	
DipcAssertEQ	Determine if two conditions are equal, and throw an exception if they are not equal	string value	
DipcAssertNE	Determine if two conditions are not equal, and throw an exception if they are equal	two arbitrary expressions	

Events

Events provides an abstraction of the logging capabilities of WAVM. Applications can subscribe to and listen to these events through the client’s RPC interface. The event is declared by the keyword DIPC_EVENT. The event only needs to declare the event name and parameters, and no return value. The event parameter type is consistent with the parameter type restrictions of the externally accessible function.

//Declaration
DIPC_EVENT(event_name,int32, string);

//Call
int32 val1;
string val2;
DIPC_EMIT_EVENT(event_name,val1,val2）;

Gas Calculation

For normal transaction and contract transaction, the calculation of gas is slightly different:

Normal Transaction

The total gasUsed value of a normal transaction is divided into two parts, fixedGasUsed is built into the system, and f(txExtraData) is calculated based on the extraData inside the transaction:

​ totalGasUsed = fixedGasUsed + f(txExtraData)

Suppose that in a normal transaction, the number of bytes whose value is 0 in exteraData is ZeroBytes, and the number of bytes whose value is non-zero is NoZeroBytes. Then f(txExtraData) is expressed as follows:

​ f(txExtraData) = TxDataZeroGas*ZeroBytes + TxDataNonZeroGas*NoZeroBytes

Parameters	System Default Value	Remarks
—————-	——————–	————————————————————
fixedGasUsed	21000	This is the default fixedGasUsed value for the current system normal transaction.
TxDataZeroGas	4	When the data is 0, the gasUsed of unit bytes
TxDataNonZeroGas	68	When the data is not 0, the gasUsed of unit bytes

When the data is 0 and non-zero, its gasUsed is different because non-zero data consumes less system resources during storage and calculation.

Contributions

The Dipperin project eagerly accepts contributions from the community.We welcome contributions to Dipperin in many forms.

Working Together

When contributing or otherwise participating, please:

	Be friendly and welcoming

	Be patient

	Be thoughtful

	Be respectful

	Be charitable

	Avoid destructive behavior

Excerpted from the Go conduct document [https://golang.org/conduct].

Ways to contribute

Getting help

If you are looking for something to work on, or need some expert assistance in debugging a problem or working out a fix to an issue, our community is always eager to help. We hang out on mail report@dipperin.com. Questions are in fact a great way to help improve the project as they highlight where our documentation could be clearer.

Reporting Bugs

When you encounter a bug, please open an issue on the corresponding repository. Start the issue title with the repository/sub-repository name, like repository_name: issue name. We have provided a issue templates for bug report:Bug report template. If you can abide by this template, this will help us fix the bug more efficiently.

Suggesting Enhancements

If the scope of the enhancement is small, open an issue. If it is large, such as suggesting a new repository, sub-repository, or interface refactoring, then please @Dipperin-Project on an issue,we will pay more attention on you suggestion.

Your First Code Contribution

If you are a new contributor, thank you! Before your first merge, you will need to be added to the CONTRIBUTORS [https://github.com/dipperin/dipperin-core/blob/dev/CONTRIBUTORS] files. Open a pull request adding yourself to these files. All Dipperin code follows the LGPL license in the license document. We prefer that code contributions do not come with additional licensing. For exceptions, added code must also follow a LGPL license.

Code Contribution

If it is possible to split a large pull request into two or more smaller pull requests, please try to do so.
Pull requests should include tests for any new code before merging. It is ok to start a pull request on partially implemented code to get feedback, and see if your approach to a problem is sound.
You don’t need to have tests, or even have code that compiles to open a pull request, although both will be needed before merge. When tests use magic numbers, please include a comment explaining the source of the number.Commit messages also follow some rules. They are best explained at the official Go [https://golang.org/] “Contributing guidelines” document:
golang.org/doc/contribute.html [https://golang.org/doc/contribute.html#commit_changes]

For example:

Dipperin-core: add support for consensus
	
This change list adds support for consensus.
Previously, the Dipperin-core package was consensus slowly,sometimes leading to
a panic later on in the program execution.
Improve consensus efficiency and add some tests.
	
Fixes Dipperin/Dipperin-core/core#20.

If the change list modifies multiple packages at the same time, include them in the commit message:

Dipperin-core/core,Dipperin-core/core/Dipperin: implement wrapping of Go interfaces

bla-bla

Fixes Dipperin/Dipperin-core/core#40.

Please always format your code with goimports [https://godoc.org/golang.org/x/tools/cmd/goimports]. Best is to have it invoked as a hook when you save your .go files.

Files in the Dipperin repository don’t list author names, both to avoid clutter and to avoid having to keep the lists up to date. Instead, your name will appear in the change log and in the CONTRIBUTORS [https://github.com/dipperin/dipperin-core/blob/dev/CONTRIBUTORS] files.

New files that you contribute should use the standard copyright header:

// Copyright 2019, Keychain Foundation Ltd.
// This file is part of the dipperin-core library.
//
// The dipperin-core library is free software: you can redistribute
// it and/or modify it under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// The Dipperin-core library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

Files in the repository are copyright the year they are added. Do not update the copyright year on files that you change.

Code Review

We follow the convention of requiring at least 1 reviewer to say LGTM(looks good to me) before a merge. When code is tricky or controversial, submitters and reviewers can request additional review from others and more LGTMs before merge. You can ask for more review by saying PTAL(please take another look) in a comment in a pull request. You can follow a PTAL with one or more @someone to get the attention of particular people. If you don’t know who to ask, and aren’t getting enough review after saying PTAL, then PTAL @Dipperin-Project will get more attention. Also note that you do not have to be the pull request submitter to request additional review.

Style

We use Go style [https://github.com/golang/go/wiki/CodeReviewComments].

What Can I Do to Help?

If you are looking for some way to help the Dipperin project, there are good places to start, depending on what you are comfortable with.You can search for open issues in need of resolution.You can improve documentation, or improve examples.You can add and improve tests.You can improve performance, either by improving accuracy, speed, or both.You can suggest and implement new features that you think belong in Dipperin.

This “Contributing” guide has been extracted from the Gonum [https://www.gonum.org/] project. Its guide is here [https://github.com/gonum/license/blob/master/CONTRIBUTING].

Release Notes

Mercury (v1.0.0)

This is the first test-net version of the dipperin-core(v1.0.0) program and it marks a milestone in the history of Dipperin. Mercury introduced the following features:

	Original Deterministic Proof of Work(DPoW) consensus mechanism.

	Verifiable Random Function(VRF) based verifier sortition mechanism.

	Invertible Bloom filter Lookup Table(IBLT) based block propagation.

	Hierarchical deterministic wallet.

	Formalized ERC20 smart contract.

	Built-in economic model.

	Map-reduce proof of work mechanism.

Dipperin-core includes the following programs:

	Node main program: dipperin

	Client program: dipperin-cli

	Mining program: miner

Architecture Reference

This document describes the architecture design of Dipperin v1.0.0. In the process of implementing Dipperin, some details will be adjusted according to the specific situation and problems.

Advantages

	Random miner and fast confirmation

Dipperin retains the randomness of the block produced by the mining mechanism, and the miners with high computational ability will only have a higher probability to produce block, but will not have absolute right to produce block. The block can be accepted by the whole network only after this block verified and signed by the 22 verifiers selected by the whole network.

	Fair verifier campaign

Unlike most verifier campaign in the market, Dipperin uses a verifiable random algorithm and reputation value election mechanism, which guarantees that there are two factors affecting the results of each round of elections, rank = w * Random + m * P, where W and m are the weights of random factors and reputation values.

See Yellow Paper for details

	Well-designed economic model

Dipperin has a well-designed economic model to ensure that the rewards for miners and validators are reasonable, and attackers have no inspire to behave malicious.

	Well-designed software architecture

The architecture of Dipperin-core is well designed to make the program flexible, modular and plugable. Interface is largely used in Dipperin’s implementation, to decoupled modules. Design patterns like middleware, decorator are carefully used in the system.

System architecture

Dipperin is a decentralized blockchain network. Below is the architecture of Dipperin nodes. The left side of the picture is the architecture of PC user and the right side is the architecture of service provider.

[image: ../_images/architecture.png]

As it shown in the picture, Dipperin-core is the core program, responsible to maintain the ledger and communication with other nodes. To join the Dipperin blockchain network as a full node, user should run a Dipperin-core program. Dipperin-core expose RPC interface to wallets and other applications.

At the PC node, user can call functions of node through wallet and command line tool. At the service provider node, services like blockchain browser can subscribe events, and fetch chain data from Dipperin-core. Provider more functions through web service.

Dipperin-core
User run Dipperin-core program to join the Dipperin network. Node programs reach consensus through P2P communication, and the nodes expose RPC functional interfaces to wallets or other applications.

Each node needs to maintain a full-node data locally, which includes block data and link state data. These data are independently maintained by the Dipperin-core node program, and are not affected by external users and programs. Users can only change these data information by sending the correct transaction package to the chain.

Each Dipperin-core node program can be used as a miner or verifier. After the miner node packs the blocks that meet the difficulty requirements, it broadcasts the blocks to the verifier node through P2P communication for verification. The verified blocks are broadcasted to the whole network after the voting consensus is reached through P2P communication between the verifiers.

Linked Data Structure

We use linked data structures in block and state data.

[image: ../_images/chain_datastructures.png]

	Block data:

Blocks are connected in series by the hash of the former block contained in the latter block. The hash calculation of each block contains information such as transaction and status, so users can not change the data in the block chain at will. Even if they modify the data on their own nodes, they can not pass the consensus check of other nodes.

	State data:

In Dipperin, state data includes: balance of address, address used to calculate priority parameters, verifier registration list, etc. These data are saved to KV database through Merkle Patricia Tree, and MPT root calculated from them will be put into block header to verify in consensus conditions.

Transaction

There are different types of transactions in Dipperin. Different transactions are distinguished by counterparty addresses,

Example:

ordinary counterparty address:

0x0000 + counterparty's PubKey Hash,

registered counterparty address:

0x0002 + 00

	Normal transaction

User make normal transaction to transfer their coins. This kind of transaction only affect accounts’ balances.

	Verifier register transaction

User register as potential verifier by sending verifier register transaction. User specified amount of money will be frozen as a deposit.

	Verifier logout transaction

If a registered verifier would like to logout, he/she should make a verifier logout transaction. After logout, the user will not be selected as the verifier, but this transaction will not redeem the user’s deposit.

	Verifier unstake transaction

Users can send unstake transaction only after two slots of sending verifier logout transaction to retrieval the deposit. If there is no malpractice evidence transaction towards him/her during this period, which results in the deduction of the user’s deposit, the deposit can be successfully redeemed.

	Verifier malpractice evidence transaction

Once someone discovers that a verifier signs two different block at a same round, he/she can issue a evidence transaction. After the Dipperin cluster confirms the evidence is correct, the verifier deposit is deducted.

	Smart contract transaction

User deploy smart contract or call contract functions by sending smart contract transactions.

Various types of nodes

Dipperin-core is the main program of a node. The communication between nodes is realized through the RPC interface provided by Dipperin-core. Although Dipperin-core provides a way to register third-party services, users can embed their own RPC interface and monitor block events at the code level, we do not recommend such strongly coupled integration.

	wallet

Dipperin-wallet is the minimal Dipperin-decentralized wallet. The wallet will start a Dipperin-core, supports sending transactions, balance queries and other operations through RPC.

	Dipperincli

Dipperincli is the command line tool, can perform all defined operations to the node through RPC interface. It is more powerful than Dipperin-wallet. User can start mining or work as verifier by run commands in Dipperincli.

	Dipperin

There are some clients such as browser plug-ins, which can not synchronize a large amount of data to local. Users can open the RPC interface of a node to the outside and serve browser plug-ins and other applications. User can keep their private keys always stored in client sides, only send signed transactions to the server node when need.

Future work

We would like to keep our main net simple and secure. The next phase of our plan will focus on complementing several key block chain technologies to the main network:

	Virtual machine

Under the premise of guaranteeing the efficient operation of the main network, Dipperin introduces the mechanism of virtual machine in the side chain to ensure that it can satisfy the scenarios of unlicensed innovation and secure multi-party computing in the future.

	Ultra-light node

There are many security risks in the light client implemented by API provided by the central server, such as the central server doing evil, maliciously deceiving the user’s private key and so on. Therefore, the implementation of ultra-light node is helpful to solve the situation of these centralized servers doing evil.

	Cross-chain transaction

At present, whether in public or alliance chains, there will be a scenario of multi-chain communication. Dipperin will also promote optimization in multi-chain communication, cross-chain transaction and so on.

Command Line Tool

	How to use command line tool

	How to operate Test Node

	Related Functional Operations

How to use command line tool

Connect to test environment

dipperin command line tools are located in the $GOBIN directory: ~/go/bin/dipperincli.

Monitor for test environment: http://10.200.0.139:8887.

PBFT whole process demonstration: http://10.200.0.139:8888.

If the startup command line needs to manipulate other startup nodes,
it can be done by specifying parameters in the startup command.

Example:

Assuming that the local cluster is currently started, the command line tool needs to manipulate the V0 node.

IP: 127.0.0.1.

HttpPort: 50007.

dipperincli -- http_host 127.0.0.1 --http_port 50007

Connect to the test environment:

boots_env=test ~/go/bin/dipperincli

Or set temporary environment variables first:

export boots_env=test

Start dipperin node

The following command is to start a node, which requires a wallet password.

If no wallet path is specified, the default system path is used: ~/.dipperin/.

dipperincli --node_type [type] --soft_wallet_pwd [password]

Example:

Local startup miner:

dipperincli --node_type 1 --soft_wallet_pwd 123

Local startup miner(start mining):

dipperincli --node_type 1 --soft_wallet_pwd 123 --is_start_mine 1

Local startup verifier:

dipperincli --node_type 2 --soft_wallet_pwd 123

Connect to the test environment:

boots_env=test ~/go/bin/dipperincli -- soft_wallet_pwd 123

Error

If dipperincli started in a wrong way,
it may be that the local link data is not synchronized with the link state,
and the local link data needs to be deleted:

cd ~
rm .dipperin -fr

restart command line tool

Related Functional Operations

Separate multiple parameters by’,’

[ModuleName] [MethodName] -p [parameters]

Transaction methods

AnnounceERC20:

tx AnnounceERC20 -p [owner_address],[token_name],[token_symbol],[token_total_supply],[decimal],[gasPrice],[gasLimit]
tx AnnounceERC20 -p 0x0000661A3c6c0955B5E6dbf935f0891aAA1112b9E9ca,wjw,dip,10000,3,10wu,100000

ERC20Transfer:

tx ERC20Transfer -p [contract_address],[owner],[to_address],[amount],[gasPrice],[gasLimit]
tx ERC20Transfer -p 0x0010Cb4174726E90E3ce09360B5F0488Ab29Fa5aB130,0x0000661A3c6c0955B5E6dbf935f0891aAA1112b9E9ca,0x0000970e8128aB834E8EAC17aB8E3812f010678CF791,1000,10wu,100000

ERC20TransferFrom:

tx ERC20TransferFrom -p [contract_address],[owner],[from_address],[to_address],[amount],[gasPrice],[gasLimit]
tx ERC20TransferFrom -p 0x0010Cb4174726E90E3ce09360B5F0488Ab29Fa5aB130,0x0000661A3c6c0955B5E6dbf935f0891aAA1112b9E9ca,0x0000661A3c6c0955B5E6dbf935f0891aAA1112b9E9ca,0x0000970e8128aB834E8EAC17aB8E3812f010678CF791,1,10wu,100000

ERC20Allowance:

tx ERC20Allowance -p [contract_address],[owner],[spender]
tx ERC20Allowance -p 0x0010Cb4174726E90E3ce09360B5F0488Ab29Fa5aB130,0x0000661A3c6c0955B5E6dbf935f0891aAA1112b9E9ca,0x0000970e8128aB834E8EAC17aB8E3812f010678CF791

ERC20Approve:

tx ERC20Approve -p [contract_address],[owner],[to_address],[amount],[gasPrice],[gasLimit]
tx ERC20Approve -p 0x0010Cb4174726E90E3ce09360B5F0488Ab29Fa5aB130,0x0000661A3c6c0955B5E6dbf935f0891aAA1112b9E9ca,0x0000970e8128aB834E8EAC17aB8E3812f010678CF791,1000,10wu,100000

ERC20Balance:

tx ERC20Balance -p [contract_address],[owner_address]
tx ERC20Balance -p 0x0010Cb4174726E90E3ce09360B5F0488Ab29Fa5aB130,0x0000970e8128aB834E8EAC17aB8E3812f010678CF791

ERC20GetInfo:

tx ERC20GetInfo -p [contract_address]
tx ERC20GetInfo -p 0x0010Cb4174726E90E3ce09360B5F0488Ab29Fa5aB130

Register verifier:

tx SendRegisterTx -p [stake],[gasPrice],[gasLimit]
tx SendRegisterTx -p 1000dip,1wu,21000

Unregister verifier:

tx SendCancelTx -p [gasPrice],[gasLimit]
tx SendCancelTx -p 1wu,21000

Redemption of the deposit:

tx SendUnStakeTx -p [gasPrice],[gasLimit]
tx SendUnStakeTx -p 1wu,21000

Send transaction:

tx SendTx -p [to],[value],[gasPrice],[gasLimit]
tx SendTx -p 0x0000970e8128aB834E8EAC17aB8E3812f010678CF791,100dip,1wu,21000

Create contract:

tx SendTransactionContract -p [from],[value],[gasPrice],[gasLimit] --abi [abiPath] --wasm [wasmPath] --is-create --input [params]
tx SendTransactionContract -p 0x0000661A3c6c0955B5E6dbf935f0891aAA1112b9E9ca,0dip,1wu,5000000 --abi /home/qydev/testData/token-payable/token-payable.cpp.abi.json --wasm /home/qydev/testData/token-payable/token-payable.wasm --is-create --input liu,wjw,123456

Get contract address:

tx GetContractAddressByTxHash -p [txHash]
tx GetContractAddressByTxHash -p 0xb57c391ee4993a1b05712806eff7646c014e29882a2062fc29249d5339a72863

Estimate gas:

chain EstimateGas -p [from],[value],[gasPrice],[gasLimit] --abi [abiPath] --wasm [wasmPath] --is-create --input [params]
chain EstimateGas -p 0x0000661A3c6c0955B5E6dbf935f0891aAA1112b9E9ca,0dip,1wu,5000000 --abi /home/qydev/testData/token-payable/token.cpp.abi.json --wasm /home/qydev/testData/token-payable/token.wasm --is-create --input liu,wjw,123456

Call contract:

tx SendTransactionContract -p [from],[contract_address],[value],[gasPrice],[gasLimit] -func-name [function_name] --input [params]
tx SendTransactionContract -p 0x0000661A3c6c0955B5E6dbf935f0891aAA1112b9E9ca,0x0014ab28B203Fd254ac6f123cC94D7a91011eFFeaf24,10dip,1wu,5000000 -func-name transfer --input 0x00005586B883Ec6dd4f8c26063E18eb4Bd228e59c3E9,100

Call contract without state change:

tx CallContract -p [from],[contract_address] -func-name [function_name] -input [params]
tx CallContract -p 0x0000661A3c6c0955B5E6dbf935f0891aAA1112b9E9ca,0x0014ab28B203Fd254ac6f123cC94D7a91011eFFeaf24 -func-name getBalance -input 0x00005586B883Ec6dd4f8c26063E18eb4Bd228e59c3E9

Get transaction:

tx Transaction [TxId]
tx Transaction -p 0xf8dd21db65b2adcb5e3ed3c61475eb66a1653d309b1a82354959fdf58852f023

Chain methods

Get current block:

chain CurrentBlock

Get genesis block:

chain GetGenesis

Get block by number:

chain GetBlockByNumber -p [blockNumber]
chain GetBlockByNumber -p 1

Get block by block hash:

chain GetBlockByHash -p [blockHash]
chain GetBlockByHash -p 0x0f7057ff3e3048ed38c0ac2353e001dad6aded5d825d43fcc924a39221713e4c

Get receipt by tx hash

chain GetReceiptByTxHash -p [txHash]
chain GetReceiptByTxHash -p 0xb57c391ee4993a1b05712806eff7646c014e29882a2062fc29249d5339a72863

Get receipts by block number

chain GetReceiptsByBlockNum -p [blockNum]
chain GetReceiptsByBlockNum -p 100

Search logs

chain GetLogs -p [jsonFile]
chain GetLogs -p {"from_block":10,"to_block":10000,"addresses":["0x0010Cb4174726E90E3ce09360B5F0488Ab29Fa5aB130"],"topics":[["Transfer"]]}
chain GetLogs -p {"block_hash":"0x000023e18421a0abfceea172867b9b4a3bcf593edd0b504554bb7d1cf5f5e7b7","addresses":["0x0010Cb4174726E90E3ce09360B5F0488Ab29Fa5aB130"],"topics":[["Transfer"]]}

Verifier methods

GetVerifiers:

verifier GetCurVerifiers
verifier GetNextVerifiers

GetVerifiersBySlot

verifier GetVerifiersBySlot -p [slotNum]
verifier GetVerifiersBySlot -p 10

VerifierStatus

verifier VerifierStatus

Personal methods

Look up local wallet:

personal ListWallet

Look up local wallet account:

If the wallet type and path are not specified, the default wallet is displayed

personal ListWalletAccount -p [walletType],[walletPath]
personal ListWalletAccount -p SoftWallet,/home/qydev/tmp/dipperin_apps/default_v0/CSWallet

Create new wallet:

personal EstablishWallet -p [walletType],[walletPath],[password]
personal EstablishWallet -p SoftWallet,/tmp/TestWallet,123

Recovery wallet:

personal RestoreWallet -p [walletType],[walletPath],[password],[passpharse],[mnemonic],...,[mnemonic]
personal RestoreWallet -p SoftWallet,/tmp/TestWallet2,123,,plastic,balcony,trophy,fuel,vacant,inmate,profit,rival,mimic,cute,hurdle,pig,column,pudding,visit,edge,rhythm,armed,cook,federal,amount,stock,damp,bring

Open wallet:

If the wallet type and path are not specified, the default wallet is displayed

personal OpenWallet -p [walletType],[walletPath],[password]
personal OpenWallet -p SoftWallet,/tmp/TestWallet3,123

Close wallet:

If the wallet type and path are not specified, the default wallet is displayed

personal CloseWallet -p [walletType],[walletPath]
personal CloseWallet -p SoftWallet,/tmp/TestWallet3

Add account:

If the wallet type and path are not specified, the default wallet is displayed

personal AddAccount -p [walletType],[walletPath]
personal AddAccount -p SoftWallet,/tmp/TestWallet3

Get account current balance:

personal CurrentBalance -p [address]
personal CurrentBalance -p 0x0000e447B8B7851D3FBD5C6A03625D288cfE9Bb5eF0E

Get account deposit:

personal CurrentStake -p [address]
personal CurrentStake -p 0x0000e447B8B7851D3FBD5C6A03625D288cfE9Bb5eF0E

Get account nonce:

personal GetAddressNonceFromWallet -p [address]
personal GetAddressNonceFromWallet -p 0x00001c2beC8E0E4caac668cD75d520E41f827092Ce79

Miner methods

Start mining:

miner StartMine

Stop mining:

miner StopMine

Set miner address:

miner SetMineCoinBase -p [address]
miner SetMineCoinBase -p 0x0000e447B8B7851D3FBD5C6A03625D288cfE9Bb5eF0E

yellow paper

Abstract

Dipperin is a public chain positioned for financial applications. At present, the major bottlenecks of mainstream public chain for financial applications are poor performance, insufficient security, lack of privacy protection and difficulty in supervision. Dipperin applies the following design philosophy: the decentralized level not weaker than Bitcoin, the performance that meet ten million degree DAU, permissionless innovation supported, formalized high frequency applications and the standardization of cross connector and asynchronous trading mechanisms. Dipperin sets up several kinds of roles, such as ordinary nodes, sharding servers, ordinary miners and verifiers, and applies the DPoW consensus algorithm to set working mechanism for each category based on the reasonable layered architecture. By separating the miners’ and the verifiers’ work, which is the feature the most interesting, Dipperin retains the level of decentralization, reduces the possibility of fork attacks and simultaneously greatly improve trading TPS. A clear economic reward and punishment mechanism plays an important role in the stable operation of the blockchain while the successful implementation of this mechanism depends on fair election methods. Dipperin has developed a cryptographic sortition algorithm based on users’ reputation, which realizes the decentralized, fair, unpredictable and non-brittle election mechanism, ensuring the fairness and justice of the reward and punishment mechanism in order to maintain the stable operation of the blockchain ecology.

1 introduction

From white paper of Bitcoin published by Nakamoto in 2008 to the Bitcoin came out in 2009, and to the Ethereum shown up in 2014 , more and more distributed applications have sprung up. But all of these distributed systems have serious shortcomings in performance, security, and privacy. The current transaction performance of Bitcoin is about 7TPS, and with the increase of a new block every ten minutes, the storage requires more and more disk space , which has reached about 200G so far.

Upon analysis of the existing popular main public blockchains, it is essential to create a public chain that overrides the shortcomings in performance, security, privacy, efficiency, and decentralization level. Dipperin is created based on the expectation and is usable in the financial domain.

Bitcoin uses POW to enable the system to reach a consensus and elect a node that has block-packaging rights at a specific time. However, in addition to the huge problem of scalability in POW, there is another problem that has been criticized, that is, all nodes in the system need to search for suitable random numbers and perform hash calculation without stop. This process requires a lot of power consumption, which causes a huge waste of energy. Futhermore, since the workload is calculated independently among the miners in the POW consensus, the search spaces of the random numbers are overlapped with each other, resulting in inefficiency in the completion of the workload when the difficulty value is fixed. This indirectly leads to system latency and low TPS. Dipperin has proposed a Deterministic PoW (DPoW) consensus algorithm, which is a miner verifier separation mechanism. Miners use the map-reduce PoW method, and the verifiers confirm the block through the Byzantine Fault Tolerance. Comparing with traditional POW, DPOW increases the TPS greatly by decreasing the difficulty value while retaining the bitcoin decentralization level, therefore reducing energy consumption and improving efficiency.

DPoS is prone to corruption problems, for example EOS representative elections of some important candidates are questioned to bribery. The selection plan of PoW assumes that most of the computing power is loyal, but it seems more reasonable that most of the money is loyal. Algorand uses cryptographic sortition, assuming that most of money is loyal. It selects verifiers randomly, and users with more money are more likely to be selected, which is more reasonable than the first two. However, Algorand’s approach may need 4-13 rounds of interaction to reach consensus on a block and the block may be empty, and its throughput is not high enough. Inspired by Algorand, we have proposed a method based on user reputation, using VRF to randomly select verifiers and using PBFT to reach consensus. This approach is really fair for all potential verifiers.

The blockchain is based on the P2P network for data exchange. The P2P mode is different from the traditional client/server mode. Each node can be both a client and a server, so the HTTP protocal is not suitable for communication between nodes. Dipperin has structured the P2P network and realizes the DHT-based network model and fast routing lookup between points via the Kademlia algorithm. Block synchronization is an important part of communication between nodes. Dipperin uses reversible Bloom filter technology, so that nodes need only very small network bandwidth, and block synchronization can be realized by just one communication.

So far there are no real public chain with native multi-chain system. The market has some popular cross-chain trading systems, using notary public, two-way anchoring or hash-based locking, while they cannot completely shake off the centralization problem. Based on distributed signature technology, Dipperin combines zero-knowledge proof and homomorphic encryption technology to achieve a decentralized multi-chain system. As a native multi-chain system, Dipperin uses a mode of cooperation between the main chain and the side chain. The main chain and the side chain each have their distributed network, miners group, consensus mechanism, and digital assets. They operate in parallel and do not interfere with each other.

For technology details, we will begin with the Dipperin architecture, and move to P2P networks, block synchronization, mining and verification algorithms, verifier elections, block storage, wallets, and multi-chain systems.

2 The Structure of Dipperin

2.1 Block, Transaction and Account State

2.1.1 Block

In Dipperin, the block is composed of the following parts: a set of some related information pieces (named block header), and the transactions, signatures of verifiers and interlink of the super spv.

type Header struct {
	Version uint64 			// the corresponding version id of the block, use different consensus conditions or different block handling methods for compatibility with subsequent potentiel upgrades
	Number uint64 			// the height of the block
	Seed []byte 		 	// the seed used for cryptographic sortition
	Proof []byte 			// the VRF proof of the seed
	MinerPubKey []byte 		// miner public key	
	PreHash []byte 			//the hash of the last block
	Diff uint64 			// difficulty for this block
	TimeStamp []byte 		// timestamp for this block
	CoinBase []byte 		// the address of the miner who mined this block
	Nonce uint64 			// nonce needed to be mined by the miner
	Bloom []byte			// reserved field, used for bloom filter
	TransactionRoot []byte 		// the hash of the transaction trie composed of all transactions in the block
	StateRoot []byte		// MPT trie root for accounts state
	VerificationRoot []byte		// MPT trie root for committed message
	InterlinkRoot []byte 		// MPT trie root for interlink message
	RegisterRoot []byte 		// MPT trie root for register
}

In the above four roots, the MPT trie structure corresponding to TransactionRoot, VerificationRoot and InterlinkRoot are stored separately in the block body, and the state MPT trie corresponding to StateRoot is stored in LevelDB. A discussion of the MPT tree will be discussed in detail in the storage section. The corresponding block diagram is as follows:

[image: ../_images/BlockStructure.png]

In this diagram we see that the block header is composed of items listed in the struct above, and the body is composed of items of transactions, of Witnesses and Hashes of interlinks. Of course, there is a huge MPT tree structure which is composed of accounts and this tree is not stored in the blockchain. But its hash root is stored in the block header.

2.1.2 Transaction

type Transaction struct {
	AccountNonce uint64 // The nonce value of the account who has launched this transaction
	Recipient []byte // the counterparty of this transaction which has a length of 22 bytes where the first 2 bytes are used to mark the type of the transaction and the last 20 are the address of the counterparty
	Amount []byte // transaction amount
	Fee []byte // the trasaction fee for the miner
	ExtraData []byte // additional remarks for the transaction, if it is a contract transaction,then it's accompanied by the data of the contract operation
	R []byte // the R part of the originator’s signature on the transaction
	S []byte // the S part of the originator's signature on the transaction
	V []byte // the V part of the originator's signature on the transaction
	HashKey []byte // the hashkey of the originator's signature on the transaction
}

The transaction structure is as follows：

[image: ../_images/Transaction.png]

In this diagram we see that the transaction launches the transition of state. The content in the transaction structure is as explained in the code block where Witness corresponds to R,S,V and HashKey. The address of the sender can be recoverd from the Witness and the nonce of account is also information of the sender.

2.1.3 Account State

type account struct {
	Nonce uint64 // the total number of transactions originated by this account
	Balance []byte // the balance of this account address
	Stake []byte // the amount of the deposit in this account
	CommitNum uint64 // the total number of messages committed by this account
	Performance uint64 // the performance as verifier of the account, which is an 	important factor of the reputation
	VerifyNum uint64 // the number of blocks that this account should verify in total
	LastElect uint64 // the height of last elect transaction. The stake cannot be retrieved within 4 periods after the height
	ContractRoot []byte // the root hash of the contract trie created by this account
	DataRoot []byte // the root hash of the tree structure of the data generated by the application of the account executed off the chain
}

2.2 Fee Payments

In addition to the cost of the transaction, in order to avoid the abuse of blockchain by individuals, Dipperin charges the contract data used by the user and the data stored by the custom application, which will be included in the accounts of miners and verifiers.

2.3 Transaction Execution

All transactions sent to the Dipperin network can be packaged by the miners, verified by the verifier, and finally submitted to the chain after verification by consensus conditions. In the process of submitting the transaction to the chain, Dipperin will perform the operations attached to the transaction and modify the state of the chain. Different operations will be done for different types of transactions by Dipperin:

	normal transaction, modify the account balance of the sender and the receiver in the state trie

	register transaction, modify the balance and the stake of the sender in the state trie

	cancel transaction, modify the balance and the stake of the sender in the state trie

	evidence transaction, deduct the deposit from the reported party in the state trie

	contract transaction, modity the contract data in the state trie

	storage transaction, modify the storage data in the state trie

3 Consensus Mechanism of Dipperin

In the blockchain system there is no centralized node, which makes the system totally different from traditional centralized server. So in this decentralized environment, how to reach a unified opinion on a problem or proposal requires a consensus mechanism. The core issue for bitcoin or other blockchain systems is how to reach a consensus on a proposal in a decentralized environment.

However, in the blockchain consensus mechanism, there is always an impossible triangular relationship among decentralization, consistency and scalability, namely DCS triangle. That means, at most 2 of these 3 features can be fullfiled for any consensus mechanism in the blockchain system.

In the current blockchain system, the main consensus mechanisms are as follows: POW, POS\DPOS, PBFT, etc., but they all have their own defects. POW pursues a high degree of consistency and decentralisation at the cost of scalability, while POS and DPOS sacrifice decentralization and seek high consistency and scalability. In the blockchain system, if the PBFT consensus algorithm is used alone, then it cannot support the communication between a large number of nodes, but only between a small number of nodes. Furthermore, the shortcomings of these consensus mecanisms also constrain the development of blockchain system. Therefore, all current blockchain systems want to design a consensus mechanism that allows them to find the best balance in the DCS triangle of the blockchain consensus, thereby promoting the development of blockchain technology.

3.1 DPOW consensus

In Dipperin’s deterministic proof of work consensus algorithm, nodes are divided into four roles: miners, sharding servers, verifier servers, and common nodes. Each of them assumes different responsibilities in the blockchain system to maintain the stability and security of the system together.

	Ordinary node: It holds the electronic currency circulating in the system and has the right to vote. It has no special responsibility. It can perform ordinary transaction operations and can not vote or be voted in the system. Block data can only be recorded synchronously from the nodes that own packing and accounting rights.

	Sharding Server: It’s responsible for packaging transaction table and assign the hash pazzle to the miners

	Miner: It’s responsible for resolving the hash puzzle assigned by sharding servers

	Verifier Server: It’s mainly responsible for signing the blocks fabricated by miners

3.1.1 MapReduce Mining

The specificity of sharding proof of work lies in that the calculation is accomplished by sharding server and miners togother. The main principle is as follows:

In the pure proof of work mechanism, we find that the miners in the system work seperately. If they execute the proof of work calculations on the same transaction list, then the probability of repeating the work is high, which will result in a longer workload and waste of a lot of power. The process of proof of work using the fragmented POW proposed in this paper is as follows:

[image: ../_images/3.jpg]

	The sharding server divides the entire search space of proof of work into multiple parts, ensuring that there is no mutual coverage between the divided cells, and assign it to the miner.

	The miner will calculate the hash value on the assigned search space to seek proof of completion. The miner needs to periodically monitor the message notification of the sharding server during the calculation process in order to respond in time the update of workload search space or reallocation of the task by the sharding server. Once the miner completes the proof of work, the block that meets the conditions is submitted to the sharding server.

	After receiving the block submitted by the miner, the sharding server submits it to the verification server cluster and waits for the verification.

Here are the pseudo-code for the map-reduce PoW:

Precedure map-reduce POW
--
 master.start()
 worker.start()
 master.register(worker)　 //notify master about the worker
 master.dispatch(work) //distribute shards to worker
 notFound = true //miner starts mining
 while notFound do
 	 worker.change(coinbase) //worker changes coinbase data to make a trial
	 pass = worker.seal() //worker computes hash and returns true if successful
	 if pass then
		notFound = false
	 end if
 end while
 worker.submit(work) //worker submits proof of work to master
 pass = master.check(work) //master verifies validation of proof of work
 if pass then
		master.broadcast(block) //master broadcasts the valid block
 end if

In the above process, the sharding server will listen to the P2P network and package the transaction, but the sharding server will not construct the Merkle tree of the entire transaction. It will only calculate the Merkle path for the coinbase transaction, and the sharding server will send the following data to the miner:

	the hash value of the last block header

	the difficulty of mining

	the Merkle Path of the coinbase transaction

	the transaction-out part of the coinbase transaction

Apart from the above 4 parts, sharding server will not send miners other information. It waits for the miner to complete the calculation and reply to the message, but it will set a timeout and will not wait indefinitely. Upon expiration, a new fragmentation is reconstructed and assigned to the miners to prevent the system from being blocked because of non completion of the PoW by miners. In addition, when a sharding server completes a PoW proof, the other sharding servers will also package new transactions and reassign tasks to their corresponding miners. The miner performs a hash calculation on the allocated search space after a sharding task is received from the sharding server. First of all, the miner will generate an additional data and splice it into a coinbase transaction with the transaction-out portion of the coinbase transaction sent by the sharding server. This extra data generated by the miner must satisfy a certain format, starting with the miner’s ID followed by any additional information. After constructed the coinbase transaction, the miner can use the Merkle path of the coinbase transaction sent by the sharding server to calculate the Merkle root hash value of the transaction list.Then the miner can make the Merkle root hash that meets the specific difficulty value by adjusting the nonce. If the miner can’t make the Merkle root hash that meets the specific difficulty value, it can regenerate the extra data and construct a new coinbase transaction. Once a new coinbase transaction is constructed, the entire nonce search space changes, so the miner can perform a workload calculation based on this new search space to obtain a nonce value that satisfies the condition. Since the ID of each miner node is different, the coinbase transactions constructed by each miner are different, so the search space of each miner is also different. Thus, for the same transaction data assigned by the sharding server, the possibility of conflicting proof of work calculations between miners is very low.

Compared with the pure POW consensus mechanism, in the deterministic POW consensus algorithm proposed in this paper, it uses the map-reduce method to distribute the workload to the miners, and avoids the direct repetitive work of the miners. This mechanism has increased the efficiency of the miners’ workload and reduced the energy consumption of the traditional POW consensus mechanism. In addition, compared with the treatment of offline mines, the map-reduce mechanism proposed in this paper has a self-determined protocol mechanism.

3.1.2 Byzantine fault tolerance consensus mechanism of verifiers

In the deterministic POW consensus algorithm proposed in this paper, the problem of uncertainty of traditional POW consensus is solved by reasonable introduction of PBFT consensus. In this consensus mechanism, by means of registration, the system selects the verification server, which is responsible for processing the blocks packaged by the miners. This mechanism is characterized by the combination of POW and PBFT. The dedicated miner is responsible for calculating the hash problem and the packaged block performs the PBFT consensus through the verification server, so that the consensus result becomes deterministic. When the miner completes the workload, it submits the block to the verifiers, who will perform a PBFT consensus to select the block so that it be recorded on the chain. The verifier consensus process is as follows:

After the miner finds a candidate block that satisfies the condition with its nonce value, the signed block needs to be sent to the verifier servers. The verifier cluster is generated through the election process and is recorded on the blockchain. When the checker cluster receives the block sent by the miner, it needs to reach a consensus on the legality of the block submitted by the miner. Once the block is verified, it will be recorded on the blockchain, and other nodes in the system can update synchronously the newly recorded block data via the P2P network. The verifier consensus process is completed by PBFT. For the Byzantine problem, the system can only tolerate faulty nodes less than 1/3 of all nodes. Therefore, in the deterministic POW consensus mechanism proposed in this paper, the number of faulty nodes should also be less than 1/3 for the consensus to function correctly.

In the consensus mechanism of the verifiers, some improvements have been made to the original PBFT protocol. The specific consensus is divided into the following steps:

	There is a master in the verifier group, and the master will present and distribute the blocks received from the miners to other verifiers. This process is called propose

	Each of other verifiers executes the verification on the block proposed by master upon reception, and decides whether to vote for the block. If it believes that this block can not be voted, it can vote an empty block called Nil instead. It signs this vote and distribute it to all other verifiers. This process is called prevote.

	When the number of votes collected for the proposed block of all the verifiers (including itself) reaches 2/3 of the total number within the predetermined time, then the precommit stage of the block is entered, otherwise it enters the precommit stage of the empty block.

	When the number of precommit information collected for the same block reaches 2/3 of all nodes, it enters the commit phase and adds the block to the chain.

It is worth noting that when a node enters the precommit stage of a certain block, it adds a state lock for this block to itself, which means, before the state lock is released, for any subsequent round it can uniquely vote for this locked block and cannot vote on any other blocks. Similarly, when entering the second step above, each node must at first verify whether it has been locked on a different block in which case it can not accept this proposed block but the empty block.

Since there are locking conditions, there are certainly unlocking conditions. Unlock happens in two situations:

	When the locked block reaches the above condition 4 and is added to the blockchain

	When it finds that in the higher round for the same height, there are other nodes locked on other blocks.

Through the above locking and unlocking mechanism, it is possible to prevent lagged synchronization caused by network delay problems for some nodes, and also prevent malicious nodes from manipulating the network so that different honest nodes be locked on different locks, namely deadlock.

When the number of Byzantine nodes in a checker cluster is less than 1/3, the block validity of any miner to the verifier cluster can be correctly verified, and the system can reach a consensus. When the number of Byzantine nodes in the verifier cluster is between 1/3 and 2/3, the verifier cluster cannot reach a consensus on the block sent by the miners. When the Byzantine node in the verifier cluster exceeds 2/3, the Byzantine nodes in the cluster can control the consensus result by collusion. Therefore, in the deterministic POW consensus mechanism proposed in this paper, the tolerance of the verifier cluster can only be 1/3.

The deterministic POW consensus described above ensures that when a block is validated, it will be irreversible on the chain because the verifiers carry out the block confirmation process and record it to the blockchain through the PBFT consensus, ensuring that there is only one legal block at one time. As for the pure POW consensus mechanism of Bitcoin, there are probably multiple miners who complete the proof of work at the same time, which may lead to fork. In the case that the longest chain cannot be determined, the consensus result is uncertain. Due to the certainty of the consensus mechanism proposed in this paper, the blockchain system adopting this consensus mechanism will not be limited by the speed of block generation. It avoids the fork problem caused by pure POW consensus, and ensures that the system is always a longest chain without fork. By introducing PBFT to reach a consensus on the basis of traditional POW, the scalability of the system is enhanced, so that the consensus of the system is not completely dependent on the computing power competition, and the transaction can be quickly confirmed. Since the consensus between the verifiers is achieved by adopting the PBFT method, high consistency between the verifiers is also ensured.

In addition, compared with the POS and DPOS consensus mechanisms, in the deterministic POW consensus, each miner and verifier work together to maintain the normal operation of the system. It seperates the rights and uses rewards to combine the nodes. In a blockchain system that uses this consensus, each role can participate in the consensus mechanism, ensuring that the billing rights not be controlled by centralized nodes.

Since the pure PBFT consensus mechanism is not applicable to the blockchain system with too many nodes, the deterministic POW consensus requires that PBFT be used only between verifiers so that the number of nodes in this consensus break through the limitation in the PBFT consensus mechanism.

3.2 Sortition Mechanism Between Verifiers Based on Verifiable Random Function

Of all consensus algorithms, PBFT is particularly characterized by high consistency and efficiency. Nonetheless, at least 2/3 of all nodes in the system should be honest to ensure the safety and liveness of the system. Therefore, it is essential to select honest nodes as verifiers from so vast candidates.

Dipperin has applied a cryptographic sortition for verifiers based on VRF(Verifiable Random Function). Every user is assigned a weight according to its reputation in order to resist Sybil attack. This sortition mechanism ensures that only a small percentage of users are selected, and the chance of being selected is propotional to its weight. Futhermore, their identity can be verified by all users. Random results cannot be predicted in advance and cannot be manipulated by any malicious adversory. Dipperin’s sortition mechanism provides objective security, that is, the whole process is objective, and decisions are made entirely through calculations. Human intervention cannot affect this process.

3.2.1 Weighted Users

Reputation is very important in business. Our system quantifies the reputation of users and measures the weight of users by reputation. The verifier is selected by lottery, and the candidate with higher reputation has more chance of being selected. Under hypothesis that 2/3 of the network’s reputation is good, the chain’s security can be guaranteed. We believe that reputation-based weights are more fair than weighting method based on computing power or based on stocks.

Reputation : Reputation = F(Stake, Performance ，Nonce)

There are three factors for measuring reputation, stake, performance and nonce.The stake deposit determines the cost of cheating and is introduced to defend Sybil attacks. More deposit means more reputation if other conditions are equal.Performance represents the user’s past working performance as a verifier. More performance means more reputation as well if other conditions are equal. The production of performance depends on use’s activity each time as a verifier and the average commit rate.

Nonce is the number of transactions related to this account. Other conditions being equal, higher number of transactions means more reputation. The introduction of the number of transactions is to defend the Sybil attack. For example, the malicious adversory deposits money into multiple new accounts and tries to participate in the election. If this is the case, the account’s Nonce will be low and this will have a significant impact on reputation. If Nonce is in a normal range, this factor has little effect.

3.2.2 Cryptographic Sortition

The role of cryptographic sortition is to select candidates as block proposer or verifier whose identity can be verified by all other users.

The implementation of cryptographic sortition uses VRF: In the VRF algorithm, for a common input, the user can generate a hash value and a proof using its private key SK and a hash function. Other users can use this hash value and the proof, combined with the user’s public key PK, to verify whether the hash value is generated by the user for input. In the process, the user’s private key is not leaked at all from beginning to end. The user is authenticated in this way, and other users can believe his role as a verifier for a certain period of time. In this way, a set of users can be randomly selected through a common input and their identity can be verified by others.

Procedure Sortition(Stake, Performance，Nonce, Seed)
--
reputation = Reputation(Stake, Performance，Nonce)

<hash, proof> = VRF(PrivateKey,Seed)

priority = Priority(hash,reputation)

return (priority, proof)

The purpose of our introduction of reputation is to make high-credit users more likely to be selected. But whether a certain user can be selected is not a deterministic event. Therefore, it is necessary to generate a random number seed that can be generally accepted by all nodes in this distributed network. In each round we need a seed that cannot be controlled by any attacker or be predicted in advance. Let us discuss now how this seed is selected.

3.2.3 the production of verifiable random value

Production of Seed

 Application-side

Application-side

Question: How do application clients know the outcome of a transaction?

Answer: When client submit a transaction to a full node, a receipt would be returned. Clients can check the outcome of the transaction with the transaction id on the receipt from any full node.

 Index

Index

_static/up.png

_static/up-pressed.png

_images/KADstratify.png
0000111

0000100
0000101

0000000
0000001
0000010
0000011

K-bucketl : 1M F =

K-bucket2 : 21 F &

K-bucket3 : 41T 5

K-bucket6 : 2°* 41 H &

_images/MPTstorage1.jpeg
Hash A:

Hash D:

rootHash:

'‘003f

...... ‘g’ ‘d’ 94
Hash Bl lHash C
Hash B: | ‘1c¢’ |Hash D Hash C; | ‘37’ 15
...... 7 ‘g’
| !
*Hash E Hash F¢
Hash E: | ‘37’ 2.3 Hash F: | ‘35’ 6.3

_images/KAD6.png

_images/KAD7.png
Ping
Pong

Ping
Pong

find node

\

Add bucket

Node ID

_images/bloomfilter_en.png
u \Y

This is a BloomFilter composed of x,y,z, we can see that u is not an element of this set,
but v belongs to the set of false positive.

_images/bootnode.png
Ping
Pong

Ping
Pong

find node

\

Add bucket

Node ID

_images/Transaction.png
Account Sender

-

Account Receiver

.

Miner

State N

Transaction

Nonce of Account

Witness

Ricipient

Amount

Fee

Extra Data

>

State N+1

_images/architecture.png
user brower

Architecture

Dipperin- Dipperin-

scan & api dashboard

PC server

_images/chain_datastructures.png
block 1

!_*_\

txroot

o Shate
root root

A

i

pre hashr

block 2

!—1_\

Shate
root

root

txroot

A

)

pre hasir

1

valuel value2

values

Valuer
updated

valued

w21

_images/coinevolution_en.jpg
Total Supply

DIP market circulation

» Year
product is%muu, market is stable

_images/BlockStructure.png
Block Header

Block Body

Version Number Seed
PreHash Diff TimeStamp
CoinBase Nonce Bloom
Transactio nRoot Verificatio nRoot InterlinkRoot StateRoot
A A
MPT MPT MPT MPT
Tx Tx Sig Sig Hash | | Hash Account| |Account
Tx Tx Sig Sig Hash | | Hash Account| |Account

LevelDB

_images/IBLT.png
count
keySum
keyHashSum

count
keySum
keyHashSum

count
keySum
keyHashSum

Y W W
X w Y Y
V V X V X
3 2 1 3 3
Y+X+V W+V X W+Y+V W+Y+X
H(Y)+H(X)+H(V) H(W)+H(V) H(X) HW)+H(Y)+H(V) H(W)+H(Y)+H(X)
W
\% W W
V Z Z V Z
1 3 1 2 2
V W+V+Z Z W+V W+Z
H(V) HW)+H(V)+H(Z) H(Z) H(W)+H(V) H(W)+H(2)
Y
Y X X
X Z Z Y Z
2 1 0 1 1
Y+X V4 X-Z Y Y+X-Z
H(Y)+H(X) H(Z) H(X)-H(Z) H(Y) H(Y)+H(X)-H(2)

_images/3.jpg
node node

node

node

N4

N4

N4

AL,

_images/KAD2.png
A(000) B(001) C(010)

_images/consensus_mech.png
———

Determine One @
Solved) —+—» Propose » Prevote Block

Puzzle 7y

Sharding Server 1

Prevote Empty

~,

New Round Wait 2/3
Solved
Puzzle | Precommit @
Sharding Server 2 Empty
: v
Commit < Wait 2/3 Precommit

PoW

P T T T T e

P2P Network

nav.xhtml

 Table of Contents

 		
 A programmable financial ecosystem

 		
 Quick start

 		
 Prerequisites

 		
 Building the source

 		
 Mac & Linux

 		
 Windows

 		
 Executables

 		
 Running dipperin

 		
 Setting environment variables

 		
 Full node on the main Dipperin network

 		
 Using command line

 		
 Error

 		
 Key Consepts

 		
 Blockchain

 		
 What is blockchain?

 		
 How does blockchain work?

 		
 What is Dipperin?

 		
 Consensus

 		
 Deterministic Proof of Work

 		
 Verifiable Random Function(VRF) based verifier sortition mechanism

 		
 Transactions

 		
 Transaction data structure

 		
 Committing transactions

 		
 Transaction validity

 		
 The Network

 		
 Network structure

 		
 Admission to the network

 		
 Nodes

 		
 Node architecture

 		
 interface/event

 		
 service

 		
 base model

 		
 Smart Contract

 		
 What is a smart contract?

 		
 Dipperin smart contract

 		
 Dapps

 		
 Dipperin Dapp Development

 		
 How to develop a Dapp with Dipperin Wallet Extension

 		
 Tutorials

 		
 Build your first network

 		
 Install and start Dipperin Command Line Tool

 		
 Init verifiers

 		
 Setup genesis state

 		
 Start a bootnode

 		
 Start verifiers

 		
 Start miner master(default have a miner)

 		
 Distribute your token

 		
 Deploy token through command line

 		
 Deploy token through wallet application

 		
 Deploy token through JavaScript API

 		
 Smart Contract Development

 		
 Install Compiler

 		
 Build From Source Code

 		
 Use Dipc

 		
 Deploy Smart Contract

 		
 Step 1: Obtain Contract Source

 		
 Step 2: Deploy a Contract

 		
 Understanding ABI Files

 		
 Data Types

 		
 Storage Types

 		
 Fundamental Types

 		
 Functions

 		
 Init Function

 		
 Accessible Functions

 		
 Internal Functions

 		
 Return Value Display

 		
 Standard Library Functions

 		
 Events

 		
 Gas Calculation

 		
 Normal Transaction

 		
 Contributions

 		
 Working Together

 		
 Ways to contribute

 		
 Getting help

 		
 Reporting Bugs

 		
 Suggesting Enhancements

 		
 Your First Code Contribution

 		
 Code Contribution

 		
 Code Review

 		
 Style

 		
 What Can I Do to Help?

 		
 Release Notes

 		
 Mercury (v1.0.0)

 		
 Architecture Reference

 		
 Advantages

 		
 System architecture

 		
 Linked Data Structure

 		
 Transaction

 		
 Various types of nodes

 		
 Future work

 		
 Command Line Tool

 		
 How to use command line tool

 		
 Connect to test environment

 		
 Start dipperin node

 		
 Error

 		
 Related Functional Operations

 		
